
a

.

.

Nicholas J. Higham
Robert S . Schreiber

October, 1988

Research Institute for Advanced Computer Science
NASA Ames P,esearch Center

RIACS Technical Repon 88.29

NASA Cooperative Agreemeot Number XCC -7-387

Fast Polar Decomposition of an
Arbitrary Matrix

(8ASA-CB-1854 12) FAS¶ FOLA6 Z I C C B I O S I T I O I
Gi A N A B E X T S A R Y H11133IP advanced Ccrgutrr Science) 1 5 f CSCL 12A

(3rsezrch JInst. for
Unclas

G3/64 0217855

Research Institute for Advanced Computer Science

Fast Polar Decomposition of an
Arbitrary Matrix

Nicholas J . Higham*
Roben S . Schreiber

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 88.29
October, 1988

The polar decomposition of an m x n matrix A of full rank, where m 2 n, can
be computed using a quadratically convergent algorithm of Higham [SIAM J. Sci. Stat.

Comput., 7 (1986), pp.1160-11741. The algorithm is based on a Newton iteration involv-

ing a matrix inverse. We show how with the use of a preliminary complete orthogonal

decomposition the algorithm can be extended to arbitrary A. We also describe how to

use the algorithm to compute the positive semi-definite square root of a Hermitian pos-

itive semi-definite matrix. We formulate a hybrid algorithm which adaptively switches

kom the matrix inversion based iteration to a matrix multiplication based iteration due

to KO-, and to Bj6rc.k and Bowie. The decision when to switch is made using a

condition estimator. This "matrix multiplication rich" algorithm is shown to be more

&dent on machines for which matrix multiplication can be executed 1.5 times faster

than matrix inversion.

1980 Mathematics Subject Classification: Primary 65F05. Computing Reviews: G. 1.3.

Key Words: Polar decomposition, complete orthogonal decomposition. matrix square root, matrix

multiplication. Schulz iteration, condition estimator.

*Nicholas J. Higham is located at the Department of Computer Science, Cornell University,
Ithaca, New Yo&. He is on leave from the University of Manchester.

Work reported herein was supported in part by Cooperative Agreement NCC 2-387 between the
National Aeronautics and Space Administration (NASA) and the Universities Space Research
Association (US-) and partially supported by Office of Naval Research (ONR) under contract
no. N00014-86-K-0610.

1

1. Introduction

A polar decomposition of a matrix A E Cmx" is a factorization A = U H , where

H E CnX" is Hermitian positive semi-definite and U E Cmx" is unitary; here me

define unitary to mean that U has orthonormal rows or columns according as m 5 n

or m 2 n. The decomposition always exists, H is the unique Hermitian positive semi-

definite square root of A*A (i-e. H = (A*A)'/'), and U is unique if and only if A has

full rank (these properties are proved in section 2).

The polar decomposition is well-known in the case m 2 n; see [7, 101 for example.

We have followed Horn and Johnson [13] in extending the definition to m 5 n. The

consistency of the definition can be seen in the result that for any m and n the uni-

tary polar factor U is a nearest unitary matrix to A in the Frobenius norm (this is a

straightforward extension of a result from [SI). Because of the role it plays in solving

this and other nearness problems, computation of the polar decomposition is required

in several applications [12]. A recent application, which motivated the work here, is the

computation of block reflectors (generalizations of Householder matrices) [17]. Here,

the polar decomposition of an arbitrary matrix must be computed, and it is desirable

to do this efficiently on vector and parallel computers.

The polar decomposition can be obtained directly from the singular value decom-

position (SVD). Higham [lo] describes an alternative approach based on a Newton

iteration involving a matrix inverse. The iteration is defined for square, nonsingular

matrices only, but in [lo] it is pointed out how a preliminary QR decomposition enables

the treatment of A E C m X n with m 2 n and rank(A) = n. It is also shown in [lo] how

the iteration can be used to compute the square root of a Hermitian positive definite

matrix. According to the traditional model of computational cost based on operation

counts, the iterative algorithm is generally of similar expense to the SVD approach, but

is much more efficient when the matrix is nearly unitary. In an attempt to improve the

performance of the iterative algorithm on machines which execute matrix multiplication

at high efficiency, Schreiber and Parlett [17] propose the use of an inner Schulz iteration

to compute most of the matrix inverses; they show that this leads to an increase in

2

efficiency if matrix multiplication can be done at a rate 6.8 times faster than matrix

inversion.

The purpose of this work is two-fold. First, we extend the algorithm of [lo] so that

it is applicable to arbitrary A. Our technique is to use an initial complete orthogonal

decomposition so as to extract an appropriate square, nonsingular matrix. One might

say that the complete orthogonal decomposition is to the polar decomposition what

Chan’s preliminary QR factorization is to the SVD! We also show how to use the

algorithm of [lo] to compute the square root of a (singular) Hermitian positive semi-

definite matrix. Second, we introduce a modification of the Schulz inner iteration idea

of [17] which reduces the cutoff ratio of multiplication speed to inversion speed from 6.8

to 2, or to 1.5 if advantage is taken of a symmetric matrix product.

3

2. Iterative Polar Decomposition of an Arbitrary Matrix

The basic algorithm of [lo] is as follows. It converges quadratically for any square,

nonsingular A. We use a MATLAB-like algorithmic notation, and denote by A-* the

conjugate transpose of A-l .

Algorithm 2.1:

% Input arguments: square, nonsingular A; convergence tolerance 6.

% Output arguments: U, H .

[U, HI = polar.square(A, 6)

X o = A ; k = - 1

repeat

To adapt the algorithm to arbitrary A E C m x n we begin by computing a complete

orthogonal decomposition (COD)

A = P [, R O 0]Q*9

where P E Cmxm and Q E CnXn are unitary, and R E CrXr is nonsingular and upper

triangular (we exclude the trivial case A = 0, for which R is empty). This decomposition

may be computed using a QR factorization with column pivoting followed by a further

Householder reduction step; see [8, p.1691 for the details. Now we apply Algorithm 2.1

to R, obtaining R = URHR, and we “piece together” the polar factors of A. We have

4

where Im-r ,n - r denotes the (m - r) x (n - r) identity matrix. Note that Im-r ,n - r could be

replaced by any unitary matrix of the same dimensions; this shows the non-uniqueness

of the unitary polar factor when P = rank(A) < min(m,n). Note also that even though

U*U # I when m < n, H = U'UH for all m and n; thus A*A = H U * U H = H 2 , so

that H = (A*A)'I2.

IR evaluating U and H advantage can be taken of the zero blocks in the products.

Denoting by Q1 the first r columns of Q we have

For U we partition
r m-r

P = (Pi, P2)

and we distinguish the two cases

in which, respectively, the last m - n columns of P2 and the last n - m rows of Q* need

not participate in the multiplication.

To summarise, we have the following algorithm:

Algorithm 2.2:

% A # 0 is arbitrary.

[U, HI = polar (A , e, 6)

[p, R, Ql = COD(-% E)

Form U, H according to (2.1) and (2.2).

[UR, HR] = polar.square (R, 6)

I

As the notation indicates, in floating point arithmetic a tolerance e is required for

the complete orthogonal decomposition in order to determine a numerical rank (i.e, the

dimension of R). The natural approach is to set to zero all rows of the trapezoidal

QR factor of A which are negligible (in some measure) relative to e (see [8, p.1661).

5

The choice of E is important, since a small change in E can produce a large change

in the computed Il’ when A is rank-deficient. However, a redeeming feature is that

whatever the choice of e, and irrespective of how well the QR factorization reveals rank,

Algorithm 2.2 is stable, that is, the computed polar factors 6, 5 satisfy

where IlEll~ M m a { € , S}~~AIIF; this follows from the empirical stability of Algorithm 2.1

(see [lo]) together with the stability of the additional orthogonal transformations in

Algorithm 2.2.

The operation count of Algorithm 2.2 breaks down as follows, using the Vlop’’

notation [8, p.321. The complete orthogonal decomposition requires 2mnr - r2(m+n) +
2r3/3 + r2(n - r) flops [8, pp.165,170]. Algorithm 2.1 requires, typically, 8 iterations

(assuming S M lo-“), and hence (7+$)r3 flops (taking into account the triangularity of

R). And formation of H and U requires at most nr2 +n2r/2 and mr2 +max{nm2, mn2}

flops respectively. By comparison, computing a polar decomposition via the Golub-

Reinsch SVD algorithm requires approximately 8mn2 + 25n3/6 flops when m 2 n. The

Golub-Reinsch SVD algorithm does not take advantage of rank-deficiency, although it

could be modified to do so by using an initial complete orthogonal decomposition as

above.

Of course, operation counts are not always a reliable guide to the actual compu-

tational cost on modern vector and parallel computers. An alternative performance

indicator is the amount of matrix multiplication in an algorithm, since matrix multipli-

cation can be performed very efficiently on many modern computers [l, 2, 16, 181. As

we will see in the next section, Algorithm 2.1 can be modified so that it is rich in matrix

multiplication. In the complete orthogonal decomposition in Algorithm 2.2 the second

Householder reduction step can be accomplished using the matrix multiplication rich

WY representation of [2, 181. In the initial QR factorization effective use of the WY

representation is precluded by the column pivoting. One alternative is to use Bischof’s

local pivoting and incremental condition estimation technique [3], which does not hin-

der exploitation of the WY form. Another alternative is to compute a QR factorization

6

without pivoting, and then to apply Chan's post-processing algorithm [5] for obtaining

a rank-revealing QR factorization.

Finally we show how to use Algorithm 2.1 to compute the Hermitian positive semi-

definite square root of a Hermitian positive semi-definite A E Cnx". First, we compute

a Cholesky decomposition with pivoting,

R11 R12 ITTAD = R*R,

where R11 E Crxr is nonsingular and upper triangular. Then Householder transforma-

tions are used to zero R12 (as in the complete orthogonal decomposition}:

U*IITAIIU = ['t] [Tll 01, T11 E Crxr upper triangular.

Next, Algorithm 2.1 applied to T11 yields T11 = UTHT, whence, with Q = ITU,

2
A = Q [H$ O] Q * = (Q [0 HT 0 ,] Q *) = X 2 -

Square roots of semi-definite matrices are required in some statistical applications [9].

An alternative to this polar decomposition approach is to make use of an eigendecom-

position; the relative merits are similar to those discussed above for the SVD.

7

3. A Hybrid Iteration

To make Algorithm 2.1 rich in matrix multiplication rather than matrix inversion

Schreiber and Parlett [17] use an inner Schulz iteration

to compute X,' on all iterations after the first. This approach takes advantage of

the fact that sirlce the Xk are converging quadratically, .X;21 is an increasingly good

approximation to X,'. The Schulz iteration (3.1) is a Newton iteration and so also

converges quadratically. Schreiber and Parlett observe that for the matrices in their

application (which are often well-conditioned) the typical number of inner iterations

required for convergence is 6, 5, 3, 2, 1, leading to 17 iterations in total, or 34 matrix

multiplications. If the matrix inverses were computed directly, five inverses would be

needed. This suggests that the modified algorithm will be faster than Algorithm 2.1 if

matrix multiplication can be done at a rate 34/5 times faster than matrix inversion.

Further experimentation with the inner Schulz iteration led us to feel that it is

unnecessary to run the inner iteration to convergence, and we considered employing

just one Schulz iteration, with the starting matrix 2 0 = X ; (x X;' since Xk converges

to a unitary matrix). Thus the basic iteration

is replaced by (setting Y k = 1)

(3.3)

This is precisely the quadratically convergent iteration of Kovarik [14] and Bjorck and

Bowie [4] for computing the unitary polar factor! Hence, just a single inner Schulz

iteration is enough to maintain quadratic convergence.

For (3.3) it holds in any norm for which llI'll = 1 that

a

(As this suggests, the asymptotic error constant is 1 for (3.3) compared with 1 /2 for

(3.2) [IO]) . To maximise the number of matrix multiplicatiom we therefore need to

switch from iteration (3.2) to iteration (3.3) as soon as the convergence condition

is satisfied; to ensure fast convergence 8 should not be too close to 1. As explained

below, typically'(3.4) is satisfied for IC = 3 with 6 = 0.6 (and obviously for k = 0 if

Xo = A happens to be nearly unitary). Rather than expend a matrix multiplication

testing (3.4) we can use the matrix norm estimator CONEST from [ll]. This computes

a lower bound for llCllr by sampling several matrix-vector products Cz and C*z; thus

we can estimate IJX,"Xh - 1111, without forming X;Xk , in 0(r2) flops (for T x T X,).

A suitable way to use the estimate is to test whether it is less than M, where A < 1.

If so, X;Xk - I is formed, in preparation for (3.3), and its norm is taken. If (3.4) is

satisfied then (3.3) is used-otherwise we revert to iteration (3.2). The optimum choice

of X depends on the desired bias between wasting a matrix multiplication in an abortive

switch of iteration, and not switching soon enough. The estimate from CONEST is

almost always correct to within a factor 3, so X 2 1/3 is appropriate. In practice we

have found that the performance of the algorithm is fairly insensitive to the choices of

6 and A.

To summarise, our hybrid inversion/multiplication algorithm is as follows.

9

Algorithm 3.1:

% A must be a square, nonsingular matrix.

Xo = A; k = -1; p = 1; switched = false

[U, HI = polar.mult (A , 6, A, 0)

repeat

k = k + 1

if switched

R = I - x;xk; p = llRlll

evaluate (3.3)

else

/L = CONEST(1- X;Xk)
i f p > A 0

evaluate (3.2)

else

R = I - x;xk; p = llRlll

if p > 0, evaluate (3.2), else evaluate (3.3), switched = t rue ; end

end

end

until p 5 6

u = Xk+l
H = i (U * A + A*U)

Since iteration (3.3) requires two matrix multiplications, and iteration (3.2) re-

quires one inversion, Algorithm 3.1 will be more efficient than Algorithm 2.1 if matrix

multiplication can be done at twice the rate of matrix inversion; thus, compared with

using the full inner Schulz iteration, the “cutoff ratio” is 2 instead of 6.8. Moreover,

if advantage is taken of the symmetry of the second matrix product in (3.3) the cut-

off ratio is reduced to 1.5. The overall speedup depends on the ratio of inversions to

multiplications, which in turn depends on the conditioning of the matrix, as discussed

below.

All the algorithms mentioned here have been coded and tested in PC-MATLAB [15],

10

running on an IBM PC-AT. For this machine the unit roundoff u z 2.22 x We

used 8 = .6, A = .75, 6 = f i u , where T is the dimension of the matrix A in Algoritlinis

2.1 and 3.1, and E = max(m, n)ltll]u in the complete orthogonal decomposition, where

T is the triangular factor from the QR factorization with complete pivoting.

The following comments summarise our numerical experience, based on a wide

variety of test matrices.

0 Algorithqs 2.1 and 3.1 usually require the same number of iterations. Occa-

sionally Algorithm 3.1 requires one more iteration due to the larger error constant for

I iteration (3.3).
I

0 In general, the typical number of iterations for Algorithm 3.1 is 7-9, with the

switch of iteration on iteration 3 or 4.

0 For well-conditioned matrices (K Z (A) 5 10, say), as are common in certain appli-

cations (see [12]), Algorithm 3.1 tends to require at most 7 iterations and to switch on

iteration 1-3.

We present the results for one representative matrix in detail: A is MATLAB’s
I “gallery(5)”, a 5 x 5 nilpotent matrix. Using Algorithm 3.1 within Algorithm 2.2, the

numerical rank is diagnosed as 4, and Algorithm 3.1 is presented with a triangular matrix

i having one singular value of order lo5 and three of order 1. Table 3.1 summarises the

iteration. The backward error JJA - 8fiIJl = 4.7uJJAJJ1.

11

0 2.626537 1.1380310 (3.2) 3.15463-3

1 5.319732 2.623334 (3.2) 8.09313-3

2 4.088630 8.09623-2* (3.3)

3 3.995930 % 4.49153-3 (3.3)

4 4.000030 1.36863-5 (3.3)

5 4.000030 1.26073-10 (3.3)

6 4.000030 1.57653-17 (3.3)

t Norm estimate while (3.2) used; exact quantity while (3.3) used.

* Norm estimate exact to 5 digits.

Acknowledgement

We thank Des Higham for suggesting several improvements to the manuscript.

12

REFERENCES

D.H. Bailey, Extra high speed matrix multiplication on the Cray-2, SIAM J. Sci.

Stat. Comput., 9 (1988), pp. 603-607.

C. Bischof and C.F. Van Loan, The WY representation for products of House-

holder matrices, SIAM J. Sci. Stat. Comput., 8 (1987), pp. s2-sl3.

C.H. Bischof, QR Factorization Algorithms for Course-grained Distributed Sys-

tems, Ph.D. Thesis, Cornell University, 1988.

A. Bjorck and C. Bowie, An iterative algorithm for computing the best estimate

of an orthogonal matrix, SIAM J. Numer. Anal., 8 (1971), pp. 358-364.

T.F. Chan, Rank revealing QR factorizations, Linear Algebra and Appl., 88/89

(1987), pp. 67-82.

K. Fan and A.J. Hoffman, Some metric inequalities in the space of matrices, Proc.

Amer. Math. SOC., 6 (1955), pp. 111-116.

F.R. Gantmacher, The Theory of Matrices, Volume One, Chelsea, New York,

1959.

G.H. Golub and C.F. Van Loan, Matrix Computations, Johns Hopkins University

Press, Baltimore, Maryland, 1983.

J.C. Gower, Multivariate analysis: ordination, multidimensional scaling and allied

topics, in Handbook of Applicable Mathematics, Vol. VI: Statistics, E.H.

Lloyd, ed., John Wiley, Chichester, 1984, pp. 727-781.

N.J. Higham, Computing the polar decomposition-with applications, SIAM J.

Sci. Stat. Comput., 7 (1986), pp. 1160-1174.

N.J. Higham, Fortran codes for estimating the one-norm of a real or complex

matrix, with applications to condition estimation, Numerical Analysis Report

No. 135, University of Manchester, England, 1987; to appear in ACM Trans.

Math. Soft.

N.J. Higham, Matrix nearness problems and applications, Numerical Analysis Re-

port No. 161, University of Manchester, England, 1988; to appear in the Pro-

ceedings of the IMA Conference on Applications of Matrix Theory, s. Barnett

.

13

and M.J.C. Gover, eds, Oxford University Press.

[13]

[14]

R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, 1985.

2. Kovarik, Some iterative methods for improving orthonormality, SIAM J. N i i -

mer. Anal., 7 (1970), pp. 386-389.

(151 C.B. Moler, J.N. Little and S. Bangert, PC-Matlab User’s Guide, The XlathWorks,

Inc., 20 North Main St., Sherborn, Massachusetts 01770, 1987.

[16] R.S. Schreiber, Block algorithms for parallel machines, in Numerical Algorithms

for Modern Pardel Computer Architectures, M.H. Schultz, ed., IMA Vol-

umes In Mathematics and Its Applications 13, Springer-Verlag, Berlin, 1988,

pp. 197-207.

[17] R.S. Schreiber and B.N. Parlett, Block reflectors: theory and computation, SIAM

J. Numer. Anal., 25 (1988), pp. 189-205.

[18] R.S. Schreiber and C.F. Van Loan, A storage efficient WY representation for

products of Householder tranformations, Technical Report TR 87-864, De-

partment of Computer Science, Cornell University, 1987; to appear in SIAM

J. Sci. Stat. Comput.

